

2024 Annual Drinking Water Quality Report

Consumer Confidence Report (CCR)

PWS ID Number: TX1550036

PWS Name: CITY OF LORENA

Annual Water Quality Report for the period of January 1 to December 31, 2024.

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

CITY OF LORENA Provides Purchased Surface Water & Ground Water from the Brazos River & Southern Trinity Aquifer In McLennan County, TX.

For more information regarding this report contact: KYLER JONES 254-857-4641

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Public Participation Opportunities

Date: Every 3rd Monday each month

Time: 6:30 P.M.

Location: 107 S Frontage Rd Ste A
Lorena, TX. 76655-9609

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (254) 857-4641.

Sources of Drinking Water

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immune-compromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Information about Secondary Contaminants

Contaminants may be found in drinking water that may cause taste, color, and odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, and color of drinking water please contact the system's business office.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Definitions and Abbreviations

Definitions and Abbreviations

Action Level:

Action Level Goal (ALG):

Avg:

Level 1 Assessment:

Level 2 Assessment:

Maximum Contaminant Level or MCL:

Maximum Contaminant Level Goal or MCLG:

Maximum residual disinfectant level or MRDL:

Maximum residual disinfectant level goal or MRDLG:

MFL

mrem:

na:

NTU

pCi/L

ppb:

ppm:

ppq

ppt

Treatment Technique or TT:

The following tables contain scientific terms and measures, some of which may require explanation.

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

million fibers per liter (a measure of asbestos)

millirems per year (a measure of radiation absorbed by the body)

not applicable.

nephelometric turbidity units (a measure of turbidity)

picocuries per liter (a measure of radioactivity)

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

parts per quadrillion, or picograms per liter (pg/L)

parts per trillion, or nanograms per liter (ng/L)

A required process intended to reduce the level of a contaminant in drinking water.

Information about Source Water

CITY OF LORENA purchases water from CITY OF ROBINSON. CITY OF ROBINSON provides purchase surface water from the **Brazos River** located in **McLennan County**.

The City of Lorena is required to report regulated contaminants from other sources of water that is not their own.

Below is the City of Robinson Water Quality Data (1550010). If you have any questions, please contact **Greg Hobbs 254-662-1415 ext. 3050**.

Inorganic Contaminants	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2024	0.0819	0.0819 – 0.0819	2	2	Ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2024	0.2	0.22 – 0.22	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate [measured as Nitrogen]	2024	1.0	0 – 1.02	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Selenium	2024	10	5.1 – 5.1	50	50	ppb	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
Radioactive Contaminants	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	2022	1.5	1.5 – 1.5	0	5	pCi/L	N	Erosion of natural deposits.
Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2022	0.12	0 – 0.12	3	3	Ppb	N	Runoff from herbicide used on row crops.
Volatile Organic Contaminants	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Xylenes	2024	0.0014	0 – 0.0014	10	10	ppm	N	Discharge from petroleum factories; Discharge from chemical factories

Turbidity

	Level Detected	Limit (Treatment Technique)	Violation	Likely Source of Contamination
Highest single measurement	0.19 NTU	1 NTU	N	Soil runoff.
Lowest monthly % meeting limit	100%	0.3 NTU	N	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

TCEQ SOURCE WATER ASSESSMENT

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact **Kyler Jones at 254-857-4641**.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2022	1.3	1.3	0.0045	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

2024 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	9	0 – 9.4	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year¹

Total Trihalomethanes (TTHM)	2024	33	0 – 21	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
------------------------------	------	----	--------	-----------------------	----	-----	---	--

* The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year¹

Inorganic Contaminants	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2024	0.0449	0.0449 – 0.0449	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Cyanide	2023	20	10 - 20	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride	2024	0.77	0.77 – 0.77	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2024	1.0	0.31 – 0.7	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2023	0.1	0 - 0.1	3	3	ppb	N	Runoff from herbicide used on row crops.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Total Chlorine	2024	1.97	0.50 – 4.16	4	4	ppm	N	Water additive used to control microbes.

Violations

Revised Total Coliform Rule (RTCR)			
The Revised Total Coliform Rule (RTCR) seeks to prevent waterborne diseases caused by E. coli. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, and the elderly.			
Violation Type	Violation Begin	Violation End	Violation Explanation
MONITORING, ROUTINE, MAJOR (RTCR)	02/01/2024	02/29/2024	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

STATE WATER LOSS AUDIT

In the water loss audit submitted to the Texas Water Development Board for the time period of January through December 2024, our system lost an estimated 68,783,254 gallons of water through main breaks, leaks, inaccurate customer metering, theft and other causes. This is 36.84 % of all water taken into the system. If you have any questions about the water loss audit, please call Kyler Jones at 254-857-4641.

Lead Service Line Inventory

The City of Lorena has completed their Lead Service Line Inventory and no lead, galvanized requiring replacement, or unknown service lines exist.